
Minichannels for single-phase cooling - General considerations on pressure drop and material budget -

Mass Flow Rate (single-phase)

□ The LOCAL temperature difference between detector and refrigerant depends on the LOCAL heat flux, refrigerant heat transfer coefficient and thermal resistance (glue, etc...).

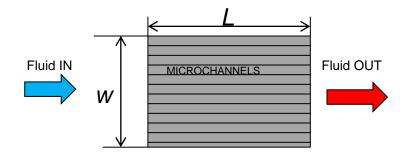
□ If heat flux, gluing and geometry are uniform, ($T_{detector} - T_{refrigerant}$) is uniform all along the stave.

□ To a first approximation, the temperature variation is the same for the detector and the refrigerant.

□ In order to achieve 5 K temperature uniformity on the detector, the refrigerant mass flow rate must be high enough to keep the refrigerant temperature rise $T_{out} - T_{in} < 5$ K

$$Q = mc_p (T_{out} - T_{in})$$

 \Box The minimum required mass flow rate depends on the specific heat c_P of the refrigerant.



Mass flow rate for ITS Upgrade

w = 15 mm, L = 210 - 370 mm C_6F_{14} : c_p @15°C = 1037 J kg⁻¹ K⁻¹ water: c_p @15°C= 4188 J kg⁻¹ K⁻¹

Refrigerant	<i>q</i> [W cm ⁻²]	<i>L</i> [mm]	Q (per stave) [W]	m (per stave) [g/s]
$C_{6}F_{14}$				5.4
Water		370	28	1.3
$C_4 F_{10}^*$ (2 bar)	0.5			0.6
CO_{2}^{*} (51 bar)				0.3
R717*(7 bar)				0.05

* Evaporative cooling examples, saturation temperature 15 °C, vapor quality in/out 0.2/0.7

 \Box C_6F_{14} is a dielectric refrigerant.

□ Water allows to decrease the mass flow rate by around 4 times as compared to C_6F_{14} . □ The mass flow rate with water is only double the mass flow rate required by evaporative cooling with C_4F_{10} .

PRESSURE DROP CONSTRAINT

Refrigerant Pressure Drop Constraint

- Water: < 0.5 bar in order to keep the pressure < 1 bar and avoid leakages</p>
- C₆F₁₄: no constraints (dielectric fluid)

Material Pressure Constraint

- Silicon: 10 bar (pressure constraint for GTK/NA62 silicon microchannel cooling system)*
- Polyimide: ?
- The pressure constraint (and x/x_0) strongly depends on the thickness of the walls

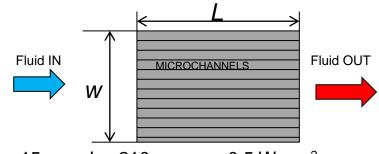
x/x_0 due to Refrigerant Only

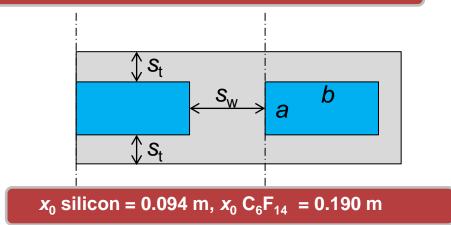
Single Channel a X b

	<i>а</i> [µm]	<i>b</i> [μm]	channels	x/x _o [%]	Pressure Drop [bar]
C_6F_{14}	60	15000	1	0.03	9.5
C_6F_{14}	160	15000	1	0.08	0.5
Water	53	15000	1	0.01	9.5
Water	140	15000	1	0.04	0.5

 $x_0 C_6 F_{14} = 0.19 \text{ m}, x_0 \text{ water} = 0.36 \text{ m}$ $x_0 \text{ silicon} = 0.09 \text{ m}, x_0 \text{ polyimide} = 0.29 \text{ m}$

* EDMS1157976 v.2





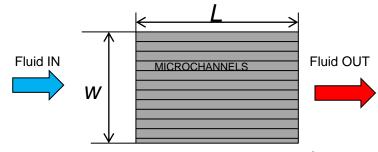
Constraints: refrigerant $\Delta T = 5K$, pressure drop < 10 bar

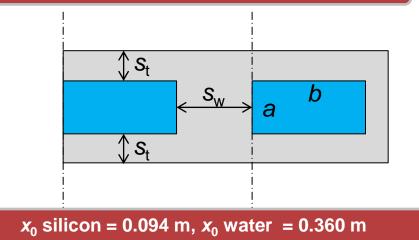
 $w = 15 \text{ mm}, L = 210 \text{ mm}, q = 0.5 \text{ W cm}^{-2}$

<i>а</i> [µm]	<i>b</i> [µm]	s _t [μm]	s _w [μm]	channels	x/x ₀ [%]	Pressure Drop [bar]
100	100	25	100	75	0.13	9.7
100	300	25	100	38	0.12	3.4
70	280	25	100	39	0.10	9.6

\Box 70~80% of the global x/x_0 is due to silicon.

□ Some improvement can be obtained with high aspect ratio channels.

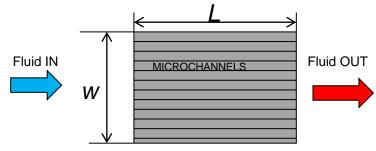


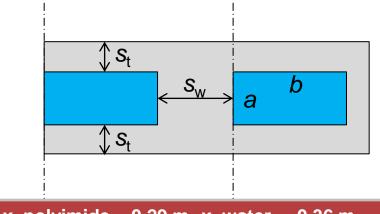

WATER - SILICON

Constraints: refrigerant $\Delta T = 5K$, pressure drop < 0.5 bar

 $w = 15 \text{ mm}, L = 210 \text{ mm}, q = 0.5 \text{ W cm}^{-2}$

<i>а</i> [µm]	<i>b</i> [μm]	s _t [μm]	s _w [μm]	channels	x/x ₀ [%]	Pressure Drop [bar]
210	210	25	100	48	0.17	0.5
210	630	25	100	21	0.13	0.2
160	480	25	100	26	0.12	0.5


 \Box ~70% of the global *x*/*x*₀ is due to silicon.


WATER - POLYIMIDE

Constraints: refrigerant $\Delta T = 5K$, pressure drop < 0.5 bar

 $w = 15 \text{ mm}, L = 210 \text{ mm}, q = 0.5 \text{ W cm}^{-2}$

 x_0 polyimide = 0.29 m, x_0 water = 0.36 m

а [µm]	<i>b</i> [μm]	s _t [μm]	s _w [μm]	channels	x/x ₀ [%]	Pressure Drop [bar]
210	210	25	100	48	0.08	0.5
200	800	25	100	17	0.07	0.24
200	800	50	200	15	0.09	0.27

 \Box 30~50% of the global *x*/*x*₀ is due to polyimide.

Conclusions

- \Box Water/C₆F₁₄ and silicon/polyimide have been considered.
- □ The maximum pressure drop and manufacturing constraints have a strong influence on the achievable x/x_0 .
- □ Water: low flow rate and high x_0 but pressure drop must be < 0.5 bar.
- \Box C₆F₁₄: higher flow rate and lower x_0 , but higher pressure drop.
- \Box Silicon: allows higher pressure but displays low x_0 .
- \Box Polyimide: lower pressure allowed, but displays high x_0 .
- □ In order to reduce the x/x_0 , polyimide may be a better option for water and silicon may be a better option for C₆F₁₄.
- \Box High aspect ratio channels allow to improve both pressure drop and x/x_0 .
- $\Box x/x_0$ reasonable target for silicon/C₆F₁₄ or polyimide/water: ~ 0.10%

